

1. Given the following reaction and data, answer the following questions.

$$
2 \mathrm{NOCl} \rightarrow 2 \mathrm{NO}+\mathrm{Cl}_{2}
$$

$\frac{\text { Time (s) }}{0}$
575
995
2080
$[\mathrm{NOCl}](\mathrm{M})$
0.200
0.158
0.137
0.102
a) How does the rate of disappearance of NOCl compare to the rate of appearance of Cl_{2} ?

The rate of disappearance of NOCl is twice the rate of appearance of Cl_{2}.
b) Is this reaction $1^{\text {st }}$ order or $2^{\text {nd }}$ order with respect to $[\mathrm{NOCl}]$?
$2^{\text {nd }}$
c) Calculate the rate constant, k , and include units.
$\mathrm{k}=0.00231 \mathrm{1} / \mathrm{M}-\mathrm{s}$
d) What is the average rate of reaction between time 0 and 995 s ?
$6.33 \times 10^{-5} \mathrm{M} / \mathrm{s}$
e) Describe how you would find the instantaneous rate of reaction at 700 s using a plot of concentration verses time.

Plot $1 /$ concentration vs. time and take the slope of the tangent line at 700 s .
f) Write the rate law for this reaction.
rate $=\mathrm{k}[\mathrm{NOCl}]^{2}$
g) Calculate the rate of disappearance of NOCl at time $=1550 \mathrm{~s}$.
$3.13 \times 10^{-5} \mathrm{M} / \mathrm{s}$
h) Calculate the rate of appearance of Cl_{2} at time $=750 \mathrm{~s}$.
$2.54 \times 10^{-5} \mathrm{M} / \mathrm{s}$
2. Aspirin decomposes into acetic acid and salicylic acid. The following data was obtained during experimentation.

Time (min.)	[Aspirin], M
0	1.000
5	0.630
10	0.460
15	0.362

a) What is the order of the reaction with respect to aspirin?
$2^{\text {nd }}$ order
b) What is the rate constant for this reaction?
$\mathrm{k}=0.117 \mathrm{I} / \mathrm{M}-\mathrm{s}$
c) How long will it take for the aspirin concentration to reach a value of 0.20 M ?

34 minutes

