Concentration & Time Name: Precetice Name: Hour:	Skill Practice 44		
	Concentration & Time	Name: Date: Hour:	

1. Given the following reaction and data, answer the following questions. $2NOCl \rightarrow 2NO + Cl_2$

Time (s)	[NOC1] (M)
0	0.200
575	0.158
995	0.137
2080	0.102

- a) How does the rate of disappearance of NOCl compare to the rate of appearance of Cl₂? The rate of disappearance of NOCl is twice the rate of appearance of Cl₂.
- b) Is this reaction 1^{st} order or 2^{nd} order with respect to [NOC1]?
- c) Calculate the rate constant, k, and include units. k = 0.00231 1/M-s
- d) What is the <u>average rate</u> of reaction between time 0 and 995 s?
 6.33x10⁻⁵ M/s
- e) Describe how you would find the instantaneous rate of reaction at 700 s using a plot of concentration verses time.

Plot 1/concentration vs. time and take the slope of the tangent line at 700 s.

- f) Write the rate law for this reaction. rate = $k[NOC1]^2$
- g) Calculate the rate of disappearance of NOCl at time = 1550 s. 3.13×10^{-5} M/s
- h) Calculate the rate of appearance of Cl_2 at time = 750 s. 2.54x10⁻⁵ M/s
- 2. Aspirin decomposes into acetic acid and salicylic acid. The following data was obtained during experimentation.

Time (min.)	[Aspirin], M
0	1.000
5	0.630
10	0.460
15	0.362

- a) What is the order of the reaction with respect to aspirin? 2^{nd} order
- b) What is the rate constant for this reaction?

 $k = 0.117 \ 1/M-s$

c) How long will it take for the aspirin concentration to reach a value of 0.20 M? 34 minutes