First Law Practice

Name: _

Date:

Hour:

For some of the following problems, you will need to use a table of ΔH_f values.

1. Using ΔH_f values calculate the enthalpy change for the following reaction.

$$2 \text{ CH}_3\text{OH}(l) + 3 \text{ O}_2(g) \rightarrow 2 \text{ CO}_2(g) + 4 \text{ H}_2\text{O}(l)$$

-1453 kJ

2. Using ΔH_f values calculate the enthalpy change for the decomposition of one mole of SO₃ (g) into $SO_2(g)$ and $O_2(g)$.

99.2 kJ

3. Calculate the enthalpy change in kilojoules when 54.7g of MgCO₃ decomposes according to the following equation: $MgCO_3(s) \rightarrow MgO(s) + CO_2(g)$

76.1 kJ

4. Which of the following reactions are exothermic?

(A)
$$C_2H_2(g) + 2 H_2(g) \rightarrow C_2H_6(g)$$

(B)
$$CS_2(l) + 3 O_2(g) \rightarrow CO_2(g) + 2 SO_2(g)$$

C)
$$N_2(g) + O_2(g) \rightarrow 2 NO(g)$$

5. Calculate the enthalpy for the following reaction: $4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \rightarrow 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(g)$. You may only use the following information:

$$N_2 (g) + O_2 (g) \rightarrow 2 \text{ NO } (g); \Delta H_f = 180.6 \text{ kJ}$$

 $N_2 (g) + 3 H_2 (g) \rightarrow 2 \text{ NH}_3 (g); \Delta H_f = -91.8 \text{ kJ}$
 $2 H_2 (g) + O_2 (g) \rightarrow 2 H_2O (g); \Delta H_f = -483.7 \text{ kJ}$

-918.3 kJ